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Abstract
We examine the exact internal decoherence dynamics of a qubit in an
isolated Josephson charge-qubit quantum computer in the presence of one-
and two-body static internal imperfections. By help of open system dynamics
quantifiers, i.e. purity, fidelity, covariance and Loschmidt echo, we distinguish
between non-unitary and unitary components of internal decoherence dynamics
and show that the non-unitary component consists of two processes: system-
environment entanglement and incoherence. Our results indicate that the
incoherence process is the major source of internal decoherence rather than
system-environment entanglement. We find that strong one-body intra–
environmental interactions, which generate fast environmental dynamics, result
in a rapid suppression of decoherence induced by both system–environment
entanglement and incoherence processes. We explain the mechanisms of
suppression of decoherence for these two processes and discuss our results.

PACS numbers: 03.65.−w, 05.30.−d, 03.65.Yz, 03.67.Lx

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Decoherence [1–3] caused by an external environment, surrounding a quantum computer
(QC) core, is not the only factor hindering a QC’s performance [4]: even when a QC core
is completely isolated from its surrounding external environment [6], coherent dynamics of
qubits within an isolated QC core is not guaranteed due to internal decoherence, dissipation and
coherent shifts emerging from two–body static residual interactions and imperfections among
qubits [7–10]. Isolated QCs [6] with static internal imperfections are prototypical examples of
self-interacting—and possibly chaotic—complex finite environments for which exact quantum
dynamics can readily be obtained on a classical computer. Exact dynamical results of
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such studies can be very informative not only in elucidating the underlying mechanism
of decoherence dynamics induced by complex environments but also in development of
more effective error-correcting strategies for quantum computing [4, 5]. Recent studies of
decoherence [7–11] reported two noteworthy effects, which are of particular importance to
the performance of a QC in the presence of static internal imperfections. The first effect is the
suppression of decoherence by chaotic environmental interactions [7–11]. The importance
of this effect is that one can in principle tame a QC core with chaos to avoid decoherence
[7–10]. Hence, a deliberately induced chaos may be used as an error-correcting strategy
when the implementation of chaos-generating interactions is feasible. The second effect is
destructive large unitary error arising from environment-induced coherent shifts (i.e. Lamb or
Stark shift-like effects) [7–10]. These effects, even though unitary, impose serious limitations
on the performance of quantum gates, and the bath chaos is not a very effective way to tackle
the error of unitary type emerging from these shifts. In fact, the bath chaos in some instances
amplifies such unitary error [7–10].

While recent studies [7–10] identified environment-induced coherent shifts as a potential
source of unitary error, the existence of internal decoherence dynamics emerging from a
non-unitary manifestation of these unitary shifts has not been appreciated. Residual qubit–
qubit interactions mix the ideal (i.e. uncoupled) computational states of qubits. The mixing
generates an internal decoherence mechanism, which in general consists of two distinct
processes: system–environment entanglement (SEE) and incoherence. SEE process gives rise
to entanglement-induced decoherence (EID) as a result of non-local correlations established
between states of a qubit and its surrounding nearby qubit environment. The incoherence
process brings about incoherence-induced decoherence (IID) via randomization of phase and
even populations of a qubit’s state. In a previous study [12], we distinguished between
these two processes and showed that SEE can be nullified when an environment evolves
in a decoherence–free subspace [13–16]. This condition allows us to drive the Kraus
decomposition [17] of incoherence dynamics, which governs an exact equation of motion for
an open quantum system when the incoherence process is the only source of decoherence [12].

The present study is concerned with manifestations of the above effects by non-chaotic
environments. By exact numerical simulations and the Kraus decomposition of incoherence
dynamics calculations [12], we investigate a spin–spin-bath model [18] designed to simulate
an open system dynamics of a qubit in a many-qubit isolated Josephson charge-qubit QC [19–
21] in the presence of one- and two-body static internal imperfections. By help of the open
system dynamics quantifiers, i.e. purity, fidelity, covariance and Loschmidt echo, we analyze
our exact numerical and the Kraus decomposition results separately. This novel approach
allows us to distinguish the non-unitary component of open system dynamics from that of the
unitary component and shows that the non-unitary component, responsible for internal qubit
decoherence, is generated by both SEE and incoherence processes. We find that the major
source of qubit decoherence stems from the incoherence process rather than SEE. We also
find that strong one-body intra-bath interactions, which render a fast internal environmental
dynamics, cause a rapid reduction of SEE, which in turn results in a fast diminution of not only
EID but also IID. An interesting aspect of our study which may be contrary to some expectations
is that we observe the suppression of decoherence as well as environment-induced large unitary
error for a non-chaotic bath. In a number of previous studies [7–11], these effects have been
attributed to the existence of two-body intra-bath interactions and thus to the chaotic bath
dynamics. The fact that we observe the same effects in the opposite limit suggests that these
effects are not truly intrinsic to the chaotic baths or baths with two-body intra-bath interactions.

The organization of this paper is as follows. In section 2 the mathematical details of our
study are given: we define Hamiltonians and initial conditions, summarize our exact numerical
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approach, review basics of incoherence dynamics and give numerical parameters used in our
calculations. We summarize open system dynamics quantifiers in section 3, and report our
results for these quantifiers in section 4. We discuss our results in section 5 and conclude our
study in section 6.

2. The model

Residual qubit–qubit interactions emerging in a many-qubit QC core generate an unavoidable
internal decoherence mechanism for the ideal computational states of qubits [7–10]. As a
result, even though an external decoherence time, with respect to a macroscopic external
environment surrounding a QC core, is so long that the QC core can be considered as
an isolated closed system [6], qubits within such an isolated QC core experience their
own nearby microscopic environments—thus are open quantum systems—and are subject
to internal decoherence dynamics [7–10].

To investigate the internal decoherence dynamics of a qubit in an isolated QC core in the
presence of one- and two-body static internal imperfections, we regard an isolated QC core as
a two-component system, i.e. a central qubit is the subsystem and the rest of the isolated QC
is the environment. Both the central qubit and its environment evolve unitarily in the absence
of residual qubit–qubit interactions. However, once these interactions are in effect, the central
qubit interacts with its nearby qubit environment and thus unitary quantum dynamics no longer
holds. Any deviation from the unitary quantum dynamics is an error source for the central
qubit. These deviations can be non-unitary, e.g. decoherence and dissipation, and also be
unitary, e.g. environment-induced coherent shifts. Non-unitary deviations may originate from
SEE or the incoherence process alone or both. Once the exact quantum dynamics of the
isolated QC is known, the reduced density operator of the central qubit can be obtained and
the origin, as well as the extent of these deviations, can be estimated by the help of open
system dynamics quantifiers. This is the approach to be pursued in our study.

2.1. Hamiltonians

We consider the isolated QC core as a bipartite closed system, represented by the total
Hamiltonian of the form

Ĥ = Ĥ S + Ĥ B + ŜB̂, (1)

where Ĥ S is the system Hamiltonian of the central qubit:

Ĥ S = − 1
2Bz

0 σ̂
(0)
z − 1

2Bx
0 σ̂ (0)

x , (2)

Ĥ B is the bath Hamiltonian, representing the rest of the QC core:

Ĥ B = −1

2

N∑
i=1

(
Bz

i σ̂
(i)
z + Bx

i σ̂ (i)
x

)
+

N−1∑
i=1

N∑
j=i+1

J i,j
x σ̂ (i)

x σ̂ (j)
x , (3)

and ŜB̂ is the coupling operator, mediating interactions between the system Ŝ (i.e. the central
qubit) and the bath B̂ (i.e. the rest of the QC) degrees of freedom:

ŜB̂ = σ̂
(0)
x/z�̂x/z, where �̂x/z =

N∑
i=1

λiσ̂
(i)
x/z. (4)

Here x/z means x or z. Hence, we consider two different types of coupling operator: bit-
flip errors are generated by xx-type coupling and phase errors are generated by zz-type
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coupling. In our notation, σ̂ i
x/z are the standard Pauli spin-1/2 operators where the central

qubit is labeled with zero while the bath qubits are labeled with i = 1, . . . , N where N is
the total number of bath qubits. To model one- and two-body qubit imperfections, we follow
previous studies [6–10]. We assume that all qubits except the central qubit are subject to a
static noise. We sample one-qubit parameters randomly and uniformly from the distributions
Bz

i ∈ [
Bz

c − δz/2, Bz
c + δz/2

]
and Bx

i ∈ [
Bx

c − δx/2, Bx
c + δx/2

]
. Here Bx

c and Bz
c are the

centers of the distributions, and the detuning parameters δx/z are always set to δx/z = 0.4B
x/z
c .

Residual system-bath and intra-bath interactions are also randomly and uniformly sampled
via the distributions λi ∈ [−λ, λ] and J

i,j
x ∈ [−Jx, Jx], respectively.

Solid state QCs inherit a variety of interactions to couple qubits; qubit–qubit residual
interactions of xx-, yy-, zz- and xy-types may all be potential error generators for a particular
QC architecture. In addition, the presence of impurities in a QC core may also lead to
different error generators than those aforementioned. One-qubit imperfections are due to
different energy spacing of qubits. Such imperfections emerge unavoidably especially for the
manufactured qubits for which the reproducibility of identical qubits with the same energy
spacing can be hard to achieve. In our study we employ xx- and zz-type couplings as
error generators. Since these error generators do not commute, they allow us to explore
different dynamical regimes of decoherence. Nevertheless, the distributions and the allowed
imperfections used in our study should still be considered as an idealization, since the nature as
well as the magnitude of imperfections would possibly be intrinsic to the actual experimental
set-up and conditions.

2.2. Initial conditions and exact numerical approach

We assume that the system and bath states are initially uncorrelated:

ρ̂(0) = ρ̂S(0) ⊗ ρ̂B(0), (5)

where the initial system state is a pure state:

ρ̂S(0) = |ψ(0)〉〈ψ(0)| with |ψ(0)〉 = (|0〉 + |1〉)/
√

2, (6)

and the initial bath state is of a Gibbsian form:

ρ̂B(0) =
2N∑
n=1

pn|n〉〈n| and pn = exp{−βEn}
/

2N∑
m=1

exp{−βEm}, (7)

where pn are the bath populations, β = 1/kBT is the inverse bath temperature, kB is the
Boltzmann constant and Ĥ B |n〉 = En|n〉 are the exact eigenvalues and eigenvectors of the
bath Hamiltonian.

The exact time evolution of the total density operator is obtained as a solution of Liouville–
von Neumann equation:

ρ̂(t) = Û (t)ρ̂(0)Û †(t) with Û (t) = exp{−(i/h̄)Ĥ t}, (8)

which is valid for all temperatures. However, since we are interested in the low temperature
limit, relevant to the charge-qubit QC proposal [19–21], the above sum in (7) can be truncated
as

ρ̂B(0) =
M∑

n=1

pn|n〉〈n| and pn = exp{−βEn}
/

M∑
m=1

exp{−βEm}, (9)

where M represents the maximum number of populated bath states at the low temperature
limit, i.e M � 2N . As a rule of thumb, M must be chosen so that the states with M + 1 and
higher are unoccupied for a given bath temperature.
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In what follows, the exact quantum dynamics of the reduced density is obtained by tracing
over the bath degree of freedom:

ρ̂S(t) =
M∑

n=1

pn TrB{|	n(t)〉〈	n(t)|}, (10)

where |	n(t)〉 = Û (t)|	n(0)〉 are solutions to the Schrödinger equation for all initial
conditions of the form |	n(0)〉 = |ψ(0)〉 ⊗ |n〉.

2.3. Kraus decomposition of incoherence dynamics

The exact time evolution of the reduced density (10) can equivalently be expressed as an
operator sum representation:

ρ̂S(t) =
M∑

n=1

2N∑
m=1

K̂m,n(t)ρ̂S(0)K̂†
m,n(t) where K̂m,n(t) = √

pn〈m|Û (t)|n〉. (11)

Here K̂m,n(t) are the Kraus operators [17]. Equation (11) is valid for a general decoherence
scenario in which a quantum subsystem may be subject to both SEE and incoherence processes.
In a recent investigation [12], we have distinguished between these two processes and
showed that SEE—and consequently EID—can be avoided when an environment evolves
in a decoherence-free subspace [13–16]. Our decoherence-free environment condition1 led us
to the Kraus decomposition of incoherence dynamics [12]:

ρ̂S(t) =
M∑

n=1

K̂n,n(t)ρ̂S(0)K̂†
n,n(t) where K̂n,n(t) = √

pn exp{−(i/h̄)(Ĥ S + Ŝbn)t}, (12)

where bn = 〈n|B̂|n〉 are the diagonal matrix elements of the bath coupling operator. In
the course of open system evolution, non-local correlations established between states of a
quantum subsystem and its environment led to the SEE process, which in turn results in EID in
the subsystem. When a subsystem undergoes EID dynamics, the off-diagonal matrix elements
of the bath coupling operator bm,n = 〈m|B̂|n〉 are non-zero, as is the case in equations (10)
and (11). Under certain conditions, which we discuss in section 3.2, the dynamics of an
environment evolves independently from the subsystem, i.e. in a decoherence-free fashion.
Therefore, the non-local correlations generating SEE cannot be established and the incoherence
dynamics emerges as the only source of decoherence.

Incoherence process originates from environment-induced coherent quantum fluctuations,
in the course of which the free system Hamiltonian is shifted as Ĥ S → Ĥ n

S = Ĥ S + Ŝbn

for each populated bath state |n〉 of the canonical bath density ρ̂B(0). Each shifted system
Hamiltonian Ĥ n

S then changes the coherent probability amplitude of a subsystem’s state by
a slightly different magnitude. The convex combination of coherent probability amplitudes
results in destructive interferences, which induce the non-unitary incoherence process. In a
sense, the incoherence process is a non-unitary manifestation of unitary quantum fluctuations.
It is noteworthy that the incoherence process is unitary for a pure environment state, such

1 Our decoherence-free environment condition slightly differs from the condition used in the Hamiltonian formulation
of decoherence-free subspaces (DFSs) [13–15] in that we do not assume a degenerate set of eigenstates spanning a
DFS. In this regard, our condition is equivalent to Zurek’s definition of DFSs in terms of pointer states that are known
to be immune to decoherence [16]. Details can be found in [12].
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as when the bath temperature is absolute zero. In this case, the only effect induced by an
environment is a coherent shift given by

ρ̂S(t) = K̂(t)ρ̂S(0)K̂†(t) where K̂(t) = exp{−(i/h̄)(Ĥ S + Ŝbn=1)t}, (13)

where n = 1 stands for the ground state of bath.
To investigate how a fast environmental dynamics recuperates qubit coherence, we obtain

both the exact decoherence dynamics (EDD) given by equation (10) and the incoherence
dynamics (ID) predicted by the Kraus decomposition (12). The EDD comprises two non-
unitary processes, i.e. SEE and incoherence. But the Kraus decomposition (12) is only exact
for a quantum subsystem undergoing the absolute incoherence process, that is, the decoherence
process in the absence of SEE. Nevertheless, the Kraus decomposition (12) can be used to
estimate the extent of the incoherence process in a general decoherence dynamics. Hence, by
a comparison between open system dynamics quantifiers, calculated separately for the EDD
and ID, one can not only estimate the extent of decoherence caused by SEE and incoherence
processes but also determine the relative importance of these processes. Distinguishing
between these two processes may also help one focus on a specific source of decoherence
that may be more readily corrected by currently available [4, 5] or specifically tailored error
correction schemes.

The explicit form of Kraus operators governing ID renders possible to obtain analytic
solution of reduced density for a large class of system–environment models. In our study the
ID that the central qubit undergoes is governed by the Kraus operators

K̂n,n(t) = √
pn exp

{
i

2h̄

(
Bz

0 σ̂
(0)
z + Bx

0 σ̂ (0)
x − 2bn

x/zσ̂
(0)
x/z

)
t

}
, (14)

where the diagonal matrix elements bn
x/z = 〈n|�̂x/z|n〉 are calculated by using the exact

eigenstates |n〉 of the bath Hamiltonian for all different cases, i.e. system–bath couplings
given in equation (4) and bath configurations summarized in the next section. The time
evolution of the density matrix elements of the central qubit is given by

ρ̂S(t) =
M∑

n=1

pn

(
|cn

+(t)|2 cn
+(t)[c

n
−(t)]∗

cn
−(t)[cn

+(t)]
∗ |cn

−(t)|2
)

, (15)

where for the xx-type coupling,

cn
±(t) =

√
2

2

[
cos

(
βn

x

2h̄
t

)
± i

(
Bz

0 ± Bn
x

)
βn

x

sin

(
βn

x

2h̄
t

)]
, (16)

βn
x =

√
Bz

0
2 + Bn

x
2 and Bn

x = Bx
0 − 2bn

x (17)

and for the zz-type coupling,

cn
±(t) =

√
2

2

[
cos

(
βn

z

2h̄
t

)
± i

(
Bn

z ± Bx
0

)
βn

z

sin

(
βn

z

2h̄
t

)]
, (18)

βn
z =

√
Bx

0
2 + Bn

z
2 and Bn

z = Bz
0 − 2bn

z . (19)
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2.4. Choice of numerical parameters

Josephson QC architectures [19–21] are ideal systems to study internal decoherence dynamics
due to their extremely long external decoherence time ∼10−4 s, which in principle allows ∼106

single qubit operation. Our numerical analysis is based on a recently proposed Josephson
charge-qubit QC [21], for which a one-qubit rotation takes about 0.1 ns and the corresponding
one-qubit coupling is B

x/z

0 = 1ε in the unit of ε = 200 mK. The one-qubit rotations can be
controlled by varying the gate voltage for rotations along the z-direction, and by either the
applied external magnetic flux through a common inductance or the applied local flux for
rotations along the x-direction. The implementation of a two-qubit gate is rather involved
and takes about ten times longer than the typical switching time of a one-qubit gate. The
corresponding two-qubit coupling is Jx = 0.05ε. One of the advantages of this design [21] is
that any two charge-qubit in a circuit can be effectively coupled via a common superconducting
inductance. Details of the experimental procedure to implement one- and two-qubit gates for
this QC proposal can be found in [21]. More general information on Josephson QCs can
also be found in a recent review [19]. Throughout our calculations we keep the temperature
constant at β = 4ε, which is within the characteristic low temperature regime ∼50 mK for
Josephson QC proposals [19–21].

In previous studies [7–11] of decoherence, where chaos-generating two-qubit intra-bath
interactions have been shown to suppress decoherence, one-body interactions are kept constant
and the reduction of decoherence in a subsystem state is monitored via increasing the magnitude
of two-body intra-bath interactions. Here we follow a similar approach. However, our interest
is in a non-chaotic bath regime. To generate a fast environmental dynamics, we increase the
magnitude of σ̂x-type one-body intra-bath interactions until they dominate the bath dynamics,
i.e. Bx

i � Bz
i while keeping the interactions of Bz

i -type fixed. We found nothing special about
using strong σ̂x-type one-body intra-bath interactions to generate fast environmental dynamics,
which we confirmed via increasing the magnitude of σ̂z-type intra-bath interactions to achieve
Bz

i � Bx
i while keeping Bx

i -type interactions fixed. Hence, we considered two different
bath configurations. For our first bath configuration, we set Bz

c = 1ε and Bx
c = 1, 2, 3, 4ε.

Similarly, we set Bx
c = 1ε and Bz

c = 1, 2, 3, 4ε for our second bath configuration. Here, we
only present our results for the first bath configuration as a generic representation of our data.

Throughout our study we keep the system–bath coupling and two-body intra-bath
couplings constant at λ = Jx = 0.05ε, which corresponds to the experimentally accessible
value of two-qubit interaction strength for the charge-qubit QC [21]. By using the above
parameters, we obtained the exact bath eigenenergies and eigenvectors by a Lanczos algorithm
[22] for N = 10 bath qubits. The numerical solution of the Schrödinger equation for the
bipartite states |	n(t)〉 is achieved by an 8th order variable stepsize Runge–Kutta method
[23]. Time is in the unit of h̄/ε = 0.038 ns.

3. Open system dynamics quantifiers

3.1. Purity and covariance

We aim to show that the strong one-body environmental interactions suppress internal qubit
decoherence. In order to monitor the manifestation of this effect, we use two quantities: purity
to quantify the extent of decoherence in the subsystem and covariance function to quantify the
total magnitude of SEE [24]. We calculate the purity for both the EDD and ID, separately,
and by the help of the covariance function we determine the major source of decoherence.
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The purity is obtained by tracing over the squared reduced density operator, i.e.

P(t) = TrS
{
ρ̂2

S(t)
}
. (20)

In the absence of system–environment interactions, the ideal value of purity is unity for pure
initial system states. In the presence of system and environment interactions, when subsystem
dynamics is non-unitary, the purity gives values less than unity.

To quantify SEE, and thus to verify the presence of the attendant EID, we first calculate
the following covariance function [24]:

Cn(t) = Tr
{
σ̂

(0)
x/z�̂x/zρ̂n(t)

} − Tr
{
σ̂

(0)
x/zρ̂n(t)

}
Tr{�̂x/zρ̂n(t)}, (21)

for each populated pure state component |n〉 of the canonical bath state ρ̂B(0). Here,
the averages, given by a full trace Tr{·}, are calculated for the bipartite states ρ̂n(t) =
Û (t)ρ̂n(0)Û †(t) which evolve from the initial conditions of product form ρ̂n(0) = ρ̂S(0) ⊗
|n〉〈n|. By using Cn(t), we then obtain the absolute value of canonical covariance

C(t) =
M∑

n=1

pn|Cn(t)|. (22)

Cn(t) takes non-vanishing negative values as well as positive values for each |n〉. The
higher the magnitude of Cn(t) the stronger the SEE and so is the magnitude of EID. To monitor
the suppression of EID in a systematic manner, we monitor the time evolution of the absolute
value of canonical covariance rather than the canonical covariance itself. Hereafter we simply
refer to C(t) as the covariance. When we systematically increase the magnitude of intra-bath
interactions, we expect the covariance function to approach zero in the same manner, indicating
the reduction of EID.

3.2. Fidelity and Loschmidt echo

In order to monitor effects of environment-induced unitary shifts on subsystem dynamics, and
to analyze these shifts as the magnitude of one-body intra-bath interactions changes, we use
fidelity. Purity is not a good error quantifier in this respect. This is because purity, like entropy,
is invariant under unitary transformations, and thus is insensitive to environment-induced
unitary effects. Fidelity, on the other hand, is sensitive to all sources of environment-induced
effects. Hence, a large magnitude of deviation between fidelity and purity decay behavior is a
good indicator of unitary shifts emerging in open system dynamics.

Given the free system evolution as

ρ̂free
S (t) = exp{−(i/h̄)Ĥ St}ρ̂S(0) exp{(i/h̄)Ĥ St}, (23)

the fidelity is defined as an overlap between the free and open system evolutions:

F(t) = TrS
{
ρ̂S(t)ρ̂

free
S (t)

}
. (24)

The ideal value of fidelity is unity for pure initial states. In the course of open system evolution,
whether it is non-unitary or unitary, the fidelity takes values less than unity, reflecting the
deviations from the ideal system evolution.

To gain further insight into open system dynamics we also refer to the theory of Loschmidt
echo. Recent investigations [25] showed that the Loschmidt echo is a good indicator of the
stability of a quantum motion under perturbations and a great deal of information regarding an
open system evolution can also be obtained from the Loschmidt echo dynamics [25]. Below,
we shortly review the Loschmidt echo formulation of open system dynamics and show the
equivalence of Loschmidt echo and fidelity when incoherence dynamics is the only source of
decoherence for a quantum subsystem.
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When system–environment interactions are not in effect, i.e. ŜB̂ = 0, dynamics of
a bipartite quantum system, composed of a subsystem and and its environment, evolves
unitarily Û 0(t) = exp{−(i/h̄)Ĥ 0(t)} under the Hamiltonian Ĥ 0 = Ĥ S + Ĥ B , which defines
the unperturbed time evolution. The perturbed time evolution Û (t) = exp{−(i/h̄)Ĥ t} that
emerges as a result of system–environment interactions V̂ = ŜB̂ is governed by Ĥ = Ĥ 0 + V̂ ,
which is nothing but the total Hamiltonian (1). When the matter of interest is only the
dynamics of a subsystem (or its environment), the perturbed time evolution of the subsystem
(or its environment) is non-unitary in general as long as V̂ generates non-local quantum
correlations between the system and environment degrees of freedom. Nonetheless, under
special circumstances, such as when a subsystem (or its environment) evolves in a decoherence-
free subspace, a purely unitary subsystem (or environment) evolution is also possible in the
presence of perturbations. Depending on the type of perturbation and initial states, non-unitary
dynamics may be caused by SEE or the incoherence process alone, or both. Here our interest
is in the time evolution of Loschmidt echo when ID is the only source of decoherence for a
quantum subsystem, in other words, when the perturbations do not generate any SEE. In such
an instance, it turns out that while the environment evolves in a decoherence-free fashion, i.e.
unitarily, the subsystem dynamics is non-unitary, provided that the basis states spanning the
decoherence-free environment is non-degenerate [12].

For the most, if not all, system–environment models, an appropriate choice of initial state
of an environment is of a Gibbsian form, and therefore our focus is on the canonical Loschmidt
echo

M(t) =
M∑

n=1

pn|fn(t)|2, (25)

which can conveniently be expressed in terms of the echo amplitudes [25]

fn(t) = 〈	n(0)|Û 0(t)Û (t)|	n(0)〉, (26)

where the initial states are of the form |	n(0)〉 = |ψ(0)〉 ⊗ |n〉.
Based on the theory of the Loschmidt echo [25], one can expect a fast environmental

dynamics to be more stable against perturbations, which is, for example, a well-established
result for chaotic environmental dynamics [25]. Nevertheless, a similar consideration also
holds for non-chaotic environmental dynamics. The stabilized quantum motion implies the
isolation of environment degree of freedom from the rest of the bipartite system, i.e.

Û (t)|ψ(0)〉 ⊗ |n〉 = Ûn
S(t)|ψ(0)〉 ⊗ ÛB(t)|n〉, (27)

where Ûn
S(t) = exp{−(i/h̄)Ĥ n

St} defines the perturbed time evolution in the subsystem degree
of freedom. As discussed in detail in [12], equation (27) defines a condition for decoherence-
free environment evolution under which SEE cannot be generated, i.e. C(t) = 0. This condition
is exactly satisfied when [Ĥ B, B̂] = 0 since ρ̂B(0) is a function of Ĥ B . It has been shown
by a number of test examples that the above equality is also approximately satisfied when
Ĉ(t) → 0 even though [Ĥ B, B̂] �= 0 [12]. Now, since the unperturbed quantum evolution
takes the form

Û 0(t)|ψ(0)〉 ⊗ |n〉 = Û S(t)|ψ(0)〉 ⊗ ÛB(t)|n〉, (28)

by substituting Û 0(t) and Û (t) into equation (26), one can show that the fidelity of the
subsystem degree of freedom exactly coincides with the Loschmidt echo of the bipartite
system, i.e. M(t) = F(t) when the incoherence dynamics is the only source of decoherence.
We will use this interesting observation to explain the suppression of the decoherence effect
in our study.
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Figure 1. Time evolution of purity P(t) in the case of xx-type coupling for increasing values of
intra-bath interactions, i.e. Bz

c = 1ε and Bx
c = 1, 2, 3, 4ε. (a) Exact decoherence dynamics and

(b) incoherence dynamics.

4. Results

In this section, we present our exact numerical and Kraus decomposition results for the open
system dynamics quantifiers and analyze the decoherence dynamics of the central qubit for xx-
and zz-type couplings and for increasing magnitude of intra-bath interactions, i.e. Bz

c = 1ε and
Bx

c = 1, 2, 3, 4ε. We plot the time evolution of purity P(t) in figure 1 for xx-type coupling
and in figure 2 for zz-type coupling. In figures 1(a) and 2(a), we plot the P(t) for the EDD,
obtained by equation (10), and in figures 1(b) and 2(b), we plot the P(t) for the ID, predicted
by the Kraus decomposition (15).

Both the EDD and ID P(t) plots show that increasing the magnitude of Bx
c -type intra-bath

interaction results in a systematic improvement inP(t) for both xx- and zz-type couplings. The
largest magnitude of decoherence (i.e. the EID as well as the IID) is observed for Bx

c = 1ε.
A dramatic decrease in P(t) is seen for Bx

c = 2ε, above which the improvement in P(t)

gradually continues, and by the time Bx
c = 4ε, the P(t) is below the theoretically allowed

value of 0.999 99 [26].
The EDD P(t) plots reflect somewhat stronger decoherence than those seen in the

ID P(t) plots. This should not be surprising because the EDD consists of two different
mechanisms destroying the qubit coherence, i.e. the SEE and incoherence processes. These
two processes cause two different time scales of decoherence: one with high amplitude
recurrences originating from the incoherence process, and the other with low amplitude/high
frequency oscillations due to the SEE. For both types of couplings, as the Bx

c increases, the IID
is suppressed and high amplitude recurrences disappear. Similarly, as the Bx

c increases, the EID
is suppressed and low amplitude/high frequency oscillations subside. While these oscillations
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Figure 2. Time evolution of purity P(t) in the case of zz-type coupling for increasing values of
intra-bath interactions, i.e. Bz

c = 1ε and Bx
c = 1, 2, 3, 4ε. (a) Exact decoherence dynamics and

(b) incoherence dynamics.

almost completely vanish for xx-type coupling, they do survive for zz-type coupling for which
the suppression of EID is slower. For both types of coupling, a comparison between the EDD
and ID P(t) plots show that decoherence is of a comparable order of magnitude for the same
value of Bx

c , which indicates that the incoherence process, rather than the SEE, is the major
source of internal decoherence.

In figure 3, we plot the time evolution of covariance C(t) for both xx and zz-type couplings
in order to monitor the reduction of SEE. Since the Kraus decomposition of incoherence (12)
assumes vanishing SEE, i.e. C(t) = 0, the C(t) only gives an indication of the suppression
of EID. For both types of couplings, the magnitude of C(t) is systematically reduced as Bx

c

increases. Hence, the faster the internal bath dynamics the lower the magnitude of decoherence
in the subsystem. While both types of coupling show a decrease in C(t), the reduction behavior
of C(t) for xx-type coupling is qualitatively different from that of zz-type coupling, especially
above Bx

c � 2ε, where we see a systematically and quickly decreasing C(t) with increasing
Bx

c . However, in the case of zz-type coupling, the reduction behavior of C(t) is slow and small
in magnitude, and thus slightly stronger decoherence is observed for zz-type coupling cases
than that seen for xx-type coupling.

We plot the time evolution of fidelity F(t) and Loschmidt echo M(t) in figures 4 and 5 for
xx- and zz-type couplings, respectively, for increasing values of the intra-bath interactions,
i.e. Bz

c = 1ε and Bx
c = 1, 2, 3, 4ε. The F(t) is plotted for the EDD in figures 4(a) and

5(a), and for the ID in figures 4(b) and 5(b). The exact time evolution of M(t) is plotted in
figures 4(c) and 5(c).

For the smallest value of intra-bath interactions, i.e. Bx
c = 1ε, where the worst decoherence

is observed, the EDD F(t) and M(t) plots show large magnitude highly irregular oscillations

11
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Figure 3. Time evolution of covariance C(t) for increasing values of intra-bath interactions, i.e.
Bz

c = 1ε and Bx
c = 1, 2, 3, 4ε. (a) xx-type coupling and (b) zz-type coupling.
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Figure 4. Time evolution of fidelity F(t) and Loschmidt echo M(t) in the case of xx-type
coupling for increasing values of intra-bath interactions, i.e. Bz

c = 1ε and Bx
c = 1, 2, 3, 4ε.

(a) Exact decoherence dynamics of F(t), (b) incoherence dynamics of F(t) and (c) exact dynamics
of M(t).

12



J. Phys. A: Math. Theor. 43 (2010) 055309 M Çetinbaş
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Figure 5. Time evolution of fidelity F(t) and Loschmidt echo M(t) in the case of zz-type
coupling for increasing values of intra-bath interactions, i.e. Bz

c = 1ε and Bx
c = 1, 2, 3, 4ε.

(a) Exact decoherence dynamics of F(t), (b) incoherence dynamics of F(t) and (c) exact dynamics
of M(t).

for both types of coupling. This irregular behavior is due to the SEE, and therefore not
observed for the ID F(t) plots, the dynamical behavior of which follows a regular periodic
pattern. For the greater values of intra-bath interactions, i.e. Bx

c � 2ε, the decoherence is of a
negligible extent, and the environment-induced coherent shifts emerge as the only dominant
effect. As a result, the EDD and ID F(t) plots exactly overlap. This is because ID becomes
exact when SEE is vanishing. Moreover, as shown in section 3.2 and seen in figures 4 and
5, the F(t) and M(t) plots exactly overlap for the absolute ID, which again occurs in the
absence of SEE.

The periodic behavior of F(t) and M(t) for Bx
c � 2ε does not correlate with the P(t)

decay behavior at all. The periodic F(t) and M(t) oscillations also display a high sensitivity
to the changes in Bx

c for zz-type coupling but almost no such sensitivity is seen for xx-
type coupling. Moreover, the magnitude of deviation of F(t) and M(t) from the ideal system
evolution is enormous in all cases, which was not indicated by the P(t) plots even for Bx

c = 1ε.
These large deviations from the ideal system evolution are due to the environment-induced
unitary effects. The P(t) plots did not show any apparent indication of these unitary effects.
This is because the P(t), like entropy, is invariant under unitary transformations, and thus
cannot detect unitary effects. On the other hand, the F(t) as well as M(t) is sensitive to
both non-unitary and unitary effects. Therefore, the tandem use of P(t) and F(t) or M(t) in
the characterization of open system dynamics supplies more valuable information than when
either of these error quantifiers was used alone.
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5. Discussions

In this section, we discuss a number of effects observed in our study. In doing so, we discuss
non-unitary and unitary effects separately.

5.1. Non-unitary effects

Two major mechanisms are responsible for the observed decoherence suppression in our study:
fast environmental dynamics, which causes the suppression of EID, and a rapid decrease in
the number of populated bath states, which not only leads to an immediate reduction of IID
but also contributes to the suppression of EID.

The suppression of EID by a fast environmental dynamics can be explained by the
Loschmidt echo formulation of open system evolution, in which system–environment
interactions are treated as perturbations acting on both system and environment degrees
of freedom. The Loschmidt echo measures the stability of a quantum motion against
perturbations. In our study we monitored the dynamical changes in our subsystem as
the magnitude of one-body intra-bath interactions increases. We observed that the fast
environmental dynamics causes a systematic reduction of SEE and eventually leads on to
a complete suppression of EID. Once a quantum subsystem is free of EID, the incoherence
process, governed by the Kraus decomposition (12), emerges as the only source of decoherence.
As a result, the fidelity of the subsystem exactly coincides with the Loschmidt echo of a bipartite
system, i.e. a subsystem plus its environment. This is only possible when the dynamics of an
environment is isolated from the rest of the bipartite system. However, since we do not simply
have ŜB̂ = 0, the isolation is then only possible if the dynamics of an environment evolves
in a decoherence-free fashion with respect to the subsystem [12]. Hence, the role of the fast
environmental dynamics is to generate (at least effectively) a decoherence-free environment
condition, under which SEE cannot be formed, and thus EID can be avoided [12]. This should
not be surprising because SEE is a correlation transfer process, in the course of which states of
a quantum subsystem and its environment are correlated non-locally so that the total entangled
state of such a bipartite system cannot be written as a product state of its components. Hence,
provided that the dynamics of an environment evolves decoherence freely, the formation of
SEE and thus the resulting EID in the subsystem degree of freedom can be avoided [12].

The effectiveness of a decoherence-free time evolution depends on the condition-
generating decoherence-free subspace [12]. For example, if a bath Hamiltonian and a bath-
coupling operator are related by a natural symmetry, e.g. they form a family of commutative
operators, this would be an exact condition for a decoherence-free environment [12]. However,
in the absence of such an apparent symmetry, the decoherence suppression may manifest quiet
differently for different types of couplings, as indicated by covariance plots, which showed
that the suppression of EID is faster for xx-type coupling cases than those of zz-type coupling.
Since we obtained the fast environmental dynamics by increasing the magnitude of Bx

c -type
interactions to achieve Bx

i � Bz
i for each bath qubit i, our bath Hamiltonian Ĥ B was dominated

by σ̂x-type operators. This suggests that [Ĥ B, �̂x] → 0 and thus C(t) → 0 as Bx
i � Bz

i .
However, in the case of zz-type coupling, we obtained C(t) → 0 but also, by the same
token, [Ĥ B, �̂z] �= 0 since [�̂x, �̂z] �= 0. Hence, the faster suppression of decoherence for
xx-type coupling is due to the similarity between the eigenstates of Ĥ B and �̂x . And, since
these eigenstates are orthogonal, they lead to vanishingly small off-diagonal matrix elements
bm,n 
 0 that are responsible for the formation of SEE. However, since the zz-type coupling
cases do not have such an extra symmetry contribution, we observed a slower suppression of
EID and surviving SEE even for Bx

c = 4ε.
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The second effect responsible for the decoherence suppression is the rapid decrease in the
number of populated bath states as a consequence of increasing the energy gap between the
ground and first excited states of the bath spectrum as the magnitude of one-body intra-bath
interactions increases. Due to the very low relevant bath temperature for the charge-qubit
QC [21], even for Bx

c = 1ε, the population of the 12th excited state is already on the order
of p12 = 10−5. For Bx

c = 2ε, we have p8 = 10−5, which is responsible for the abrupt
improvement seen in the purity plots, see figures 1 and 2. For Bx

c = 3ε and Bx
c = 4ε, the

population of the first excited state is on the order of p2 = 10−5 and p2 = 10−7, respectively,
for which the magnitude of decoherence was of a negligible extent. This is because the
only populated bath state effective in decoherence of the central qubit is the ground state.
Hence, the environmental dynamics not only evolves in a decoherence-free fashion but also
in adiabatic-like given by equation (13). Due to the decoherence-free and adiabatic-like
evolution, non-chaotic baths with fast internal dynamics can be superior to chaotic baths
[7–11] as decoherence suppressors for several reasons that we briefly discuss below.

While the chaos-generating strong two-body interactions have been shown to be very
effective in reducing decoherence in certain instances [7–11], the experimental implementation
of such strong interactions in a QC core may not be practical within today’s technological limits.
For example, a typical two-qubit gate span for the charge-qubit QC [21] on which our study
based is ten times longer than that of a one-qubit gate, which means that the corresponding
two-body coupling strength for a two-qubit gate is ten times smaller in magnitude than that of
a one-qubit gate. Whereas an effective suppression of decoherence in order to keep the purity
within theoretically acceptable limit of 0.999 99 [26] requires one- and two-body coupling
strengths to be at least of the same order of magnitude [7–9]. Hence, deliberately induced
chaotic interactions in a QC core may not be a feasible approach, at least in the near future,
to avoid decoherence. Therefore, an alternative way of tackling internal decoherence issue,
which may or may not accompany the chaos approach, can be very useful. Our results suggest
that strong one-body intra-bath interactions also very effectively reduce decoherence, and thus
can be used to correct non-unitary type errors. Moreover, there should always exist a low
temperature regime so that fast environmental dynamics evolves adiabatically from its ground
state and thus incoherence process can be avoided. However, for a chaotic bath, the density
of bath states would be high, and therefore, even though EID is completely suppressed by a
chaotic bath, IID may emerge as a more serious source of error than EID.

5.2. Unitary effects

The suppression of decoherence is of interesting consequences for open system dynamics
quantifiers which are sensitive to both non-unitary and unitary effects. As a result of
suppression of non-unitary effects, i.e. both EID and IID, we have seen that the fidelity and
Loschmidt echo plots display a completely periodic behavior. This periodic behavior emerges
from the environment-induced unitary shift. Even though non-unitary effects induced by an
environment can be completely suppressed, unitary effects may not be avoided. The shift,
even though unitary, may be a serious impediment to the performance of quantum gates since
any deviation from the ideal system evolution, whether non-unitary or unitary in nature, is an
error source.

Below, by assuming that incoherence process is the only source of decoherence, i.e. SEE
is negligibly small, we derive an explicit formula for the fidelity and examine the dynamical
behavior of this error quantifier. In the absence of system–environment interactions, the ideal
subsystem evolution (23) beats with the frequency ω0 = β0/2h̄ where β0 = (

B2
x + B2

z

)1/2
.

The system–environment interactions perturb the ideal system evolution for each populated

15



J. Phys. A: Math. Theor. 43 (2010) 055309 M Çetinbaş

pure state component |n〉 of the canonical bath state ρ̂B(0), resulting in the shifted subsystem
frequencies ωn

x/z = βn
x/z/2h̄ where βn

x/z are given by equations (17) and (19).
By using equations (15), (23) and (24), the fidelity of incoherence dynamics can be

expressed as

F(t) =
M∑

n=1

(pn/8)
{
γ1 cos 2ωn

x/zt + γ2 cos 2
(
ωn

x/z − ω0
)
t

+ 2(γ3 + γ4 cos 2ω0t) + γ5 cos 2
(
ωn

x/z + ω0
)
t
}
, (29)

where the coefficients γ1, γ2, γ3, γ4 and γ5 depend on three parameters:

γ1 = −2(−1 + c2 − d2 + e2), γ2 = (1 + c − d − e)(1 + c + d + e),

γ3 = 1 + c2 + d2 + e2, γ4 = 1 − c2 − d2 + e2, γ5 = (−1 + c + d − e)(−1 + c − d + e)

which are

c = (
Bz

0
2 + Bx

0 Bn
x

)/(
β0β

n
x

)
, d = Bx

0

/
β0, e = Bn

x

/
βn

x (30)

for xx-type coupling and

c = (
Bx

0
2 + Bz

0B
n
z

)/(
β0β

n
z

)
, d = Bx

0

/
β0, e = Bx

0

/
βn

z (31)

for zz-type coupling. To simplify the above fidelity equation, recall that B
x/z

0 = 1ε for the
central qubit. Since the magnitude of system–bath interactions are relatively weak λi 
 0.05ε,
we can assume that c 
 1 and d = 1/

√
2 
 e. Moreover, since we are interested in the low

temperature regime, where the only ground state of bath is effectively populated, i.e. pn=1 
 1,
we reach a simplified equation for the fidelity

F(t) = 1
4

[
3 + cos 2

(
ωn=1

x/z − ω0
)
t
]
, (32)

which can reproduce the observed periodic behavior for Bx
c � 2ε. Hence, the observed

periodic fidelity dynamics emerges from the shift terms bn=1
x/z , and the period of the observed

oscillations is given by P n=1
x/z = π

/(
ω0 −ωn=1

x/z

)
. Also, F(t) can be approximated for very low

temperatures by substituting bn=1
x/z with the canonical averages of the bath coupling operator

�̄x/z = TrB{�̂x/zρ̂B(0)}.
We have seen that the period of fidelity oscillations is highly sensitive to the changes in the

magnitude of intra-bath interactions for zz-type coupling but almost no sensitivity is observed
for xx-type coupling. This different dynamical behavior of fidelity for different couplings is
directly related to the changes in the diagonal matrix elements of the bath coupling operator
as the strength of intra-bath interactions increases. In figure 6, the diagonal matrix element of
the bath coupling operator, i.e. bn=1

x/z , calculated for the ground state of the bath, i.e. n = 1,
and the associated periods of fidelity, i.e. P n=1

x/z , are plotted for increasing values of intra-bath
interactions. For xx-type coupling, as Bx

c increases, bn=1
x only slightly increases, and above

Bx
c = 2ε, the increment is negligibly small. Accordingly, the changes in P n=1

x in response to
the changes in bn=1

x are also negligibly small. Hence, the fidelity dynamics is insensitive to
the changes in Bx

c for xx-type coupling. However, for zz-type coupling, increasing Bx
c results

in a quicker and steady decline of bn=1
z , which results in more rapid changes in P n=1

z , and thus
highly sensitive behavior of fidelity to the changes in Bx

c .
Coherent shifting is an interesting effect originating from the system–environment

interactions. However, unlike decoherence or dissipation, the shift affects the system unitarily.
Unitary errors generated by the shift may impose a serious limitation on the performance of
quantum gates. A quantum algorithm consists of a sequence of large number of elementary
qubit gates operating on an input state, in a predetermined order, to reach a target state. An
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Figure 6. (a) Diagonal matrix element of bath coupling operators bn=1
x/z and (b) the associated

period of fidelity P n=1
x/z plotted as a function of Bx

c . Data points are connected by lines to guide the
eye.

output state after an elementary gate in the sequence is an input state for the subsequent gate.
Once a gate is infected by a coherent shift, the attendant error spreads over the other gates
and grows in time quickly as the number of elementary gates increases, eventually rendering
the outcome of computation unpredictable. This means that the retroactive error correction is
not guaranteed, and thus error correction protocols should operate in parallel with elementary
gate components, which at best, considerably overloads the computational task. To avoid such
deleterious unitary errors in a QC core, prior knowledge of coherent shifting, i.e. the type and
magnitude of the shift, can extremely be advantageous in designing effective error correction
strategies to calibrate quantum gates against the shift, especially for architecture-dependent
intrinsic errors.

6. Summary

Residual qubit–qubit interactions emerging in a many-qubit QC core generate an inevitable
internal decoherence mechanisms for the ideal computational states of qubits. Therefore,
even though decoherence time imposed by an external environment surrounding a QC core
is infinite, an efficient operation of a QC is not guaranteed in the presence of residual qubit–
qubit interactions. By using the open system dynamics quantifiers, i.e. purity, covariance,
fidelity and Loschmidt echo, we analyzed the exact internal decoherence dynamics of a qubit
within an isolated QC in the presence of one- and two-body static internal imperfections. Our
analysis enabled us to distinguish between non-unitary and unitary components of open system
dynamics and to show that two non-unitary processes, i.e. system–environment entanglement
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and incoherence are responsible for the internal qubit decoherence. We found that the major
source of internal decoherence is induced by the incoherence process rather than system–
environment entanglement. Furthermore, we showed that fast environmental dynamics results
in a rapid reduction of decoherence induced by both system–environment entanglement and
incoherence processes. We explained the mechanisms of suppression of decoherence for these
two processes and discussed our results.
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